by the vapor flow near the bottom of the cavity. However, if such a solution does exist, the details of the flow
in this region will prove to have a weak effect on the main vapor flow characteristics far from the bottom, as
has been confirmed by calculation,

Numerical study of the model in the supersonic vapor flow regime revealed that no set of external
parameters could be found which would provide a cavity with h/ r, > 1, General analysis of the results for both
supersonic and infrasonic regimes indicated the great sensitivity of the entire gasdynamic picture to the
method of defining surface temperature Tg, which will require more accurate calculation of heat transfer
from the surface.

The numerical studies of the proposed model performed, which considered vapor gasdynamics in the
quasi-one-dimensional approximation as well as heat loss into the liquid, revealed the following. The model
predicts daggerlike melting for materials with sufficiently low thermal conductivity and external pressures
ensuring slow escape of the vapor from the cavity. Within the cavity significant regions may exist where
equilibrium is maintained not by evaporation, as in [2, 3], but by condensation of vapor on the wall. The chan-
nel width is then greater than the diameter of the light beam, and the greater part of the beam energy remains
in the liquid. To describe deep penetration of a laser beam into metals, it is obviously necessary to consider
the multipath character of vapor flow in the cavity, i.e., to solve the two-dimensional problem,
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PARAMETRIC STUDY OF HYPERSONIC BODY
SHAPES

V. A, Bordyug, Yu., A. Vedernikov, UDC 533,6.013,12
V. G. Dulov, A. I. Shvets,
and V. A. Shchepanovskii

Although the problem of the design of axisymmetric bodies for minimum drag is practically solved, the
optimization of three-dimensional aerodynamic shapes still requires detailed analysis. Many years of experi-
ence on the design of optimal spatial configurations using some exact solutions [1-5] and approximate specifi-
cation of aerodynamic load on the body surface [5~12] revealed the need for systemization of experimental re-
sults. The first numerical computations of the flow around linear forms [12] only emphasized the need for con-
ducting parametric experiments on detailed flow characteristics around three-dimensional bodies, The effect
of aspect ratio and midsection of a star-shaped body with sharp and blunt leading edges on its drag is con-
sidered here as a supplement to the computed results [11, 15] and experimental data [ 16]. It is shown experi-
meantally that, as revealed by numerical optimization [ 11, 15], there is a strong dependence of relative drag
reduction of stars on their aspect ratio. It is also shown that even for asymmetric star-shaped bodies [17] the
critical parameter is the ratio of the circle inscribed at the midsection and the circle circumscribed near it,
Slightly blunt leading edges have practically no effect on the general nature of the relations. Besides, a com-
parison is made, on the basis of approximations, with experimental and exact computational results [18].

) 1, One of the features of star-shaped configurations is that among their many types there are some for
which it is possible to obtain an exact solution for the inviscid flow field, taking into consideration all complex
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Fig. 1

nonlinear interactions, If the angle of inclination of the leading edge plane ¢ to the axis and that of the inner
edge & to the axis (Fig. 1a), and the free stream Mach number M,, are related by the equation

sin®o — 1/M2, (1.1)

—;1 — (sinza —1/M%)

tgd = ctgo =

(here ¥ is the adiabatic index), then the flow field in the neighborhood of the right star can be described ex-
actly. The leading edge shock consists of two planes connecting the sharp leading edges. The flow behind the
shock is uniform and corresponds to the flow behind plane obligue shock inclined at an angle ¢ to the free
stream at Mach number M, . If the values of My, o, and 6 do not satisfy (1,1), then a simple analytical
solution for the star-shaped configuration does not exist. Nevertheless, this flow condition could be used as
the starting point for the construction of approximate solutions, the estimation of the accuracy of approximate
methods, and for the determination of the limits of applicability of empirical theories.

Let the star parameters (Fig. 1la) satisfy (1.1), then the wave drag can be computed exactly:
Cp = 2 sin o sin §/cos (0 — 6) (1.2)
(the drag coefficient is based on the dynamic pressure g = p,v%/2 and the midsection area).

Since the surfaces of the body are at the same angle to the free stream, the wave drag coefficient deter-
mined by the method of expansion waves and the tangent-wedge method will be constant on the surface and
equal to the exact value (1.2). Computations based on Newton's formula gives Cpy =2 sin’ 6 and the relative er-
ror in this case is given by A = cot §+tan (o — 6), where the quantity (o — &) is sufficiently small at large M,
since (o — 8) physically determines the relative thickness of the shock layer, If the modified Newton's equation
is used, then Cppy =k sin? 5, where the coefficient k is determined from the exact or known experimental value
of Cp at a certain point on the body surface. For the present configuration k = 2 sins/ (cos (o — 0)sin 6) and the
modified Newton equation give exact solution (1.2),

Comparative analysis of the results of the principal approximate methods with the exact value of the wave
drag coefficients for star-shaped configurations show that Newton's method underestimates for real pressure
distribution along the surface and the tangent-wedge method overestimates. We note that the real pressure
distribution could attain its limiting values,

Figure 1b shows a star-shaped bedy in a supersonic flow at zero angle of attack, having a nonzero mo-
ment relative to the longitudinal axis [17]; v, 6 are the adjacent angles between planes passing through the
longitudinal axis and the neighboring outer and immer edges, It is possible to show that for n = 5 (n is the num-
ber of star lobes) and certain relations between geometric parameters of the star and the free stream Mach
number, there is a simple analytical solution for the flow around the configuration of the type shown in Fig. 1b.
For n = 4 (in Fig, 1b this case corresponds to y = 0) the solution of the flow problem with plane shock wave
and uniform flow behind it does not exist for any geometric parameters at all free stream Mach numbers, The
wave drag coefficient for this configuration is always less than the limiting value given by the tangent-wedge
method, All conclusions are true for configurations and free stream Mach numbers when the shock is attached
to the leading edges. Otherwise the method of tangent ~ wedge and expansion waves are not applicable.

It is not possible to use the exact solutions for the study of the flow around star~shaped configurations
with all spatially permissible parameters, Gasdynamic approach is also not applicable in the case of blunt
leading edge bodies, Experimental methods are the principal method of investigation in the case of arbitrary -
geometric parameters and flow conditions, Approximate computations, as shown above, give an overestimate
of gasdynamic parameters and the existence of exact solution for a given combination of parameters is the
control point.

2. Closed star-shaped pyramid for symmetric configuration is obtained when 6 = 7/n (Fig. 1a) and a
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configuration with a rotation (Fig. 1b) when § + y = 27/n. The pressure distribution for the flow around such
a body is determined by the equation:

_ 2 Lo 2 sing sin §
pAW— on DAC,DAB,p, prTE) +cos(q——6) on OBDC.

(]

Here the pressure coefficient is based on the dynamic pressure q = p., U2 /2, where p,, and P atthebase,
stream density and velocity, respectively.

Considering that the pressure p = p, atthebase, the wave drag Xy is determined by the relation

X, = gp SinOsing tg§tgotg 84 tg (g — O],

cos (0 — §)
where oy = 21/1n, ay/ 2= 6 = oy n =3, 4,... are the number of star lobes. After simple transformations we
get
_ sin o'sin § sin o,
Xy cos (0 — §) tgdtgo cos B cos (o, — 6) ’

For the limiting case n— = we get sin o —~ 27/n, cos § —~ 1, cos (azg—0) — 1, and finally,

xiim_ 4at $in’o sin%6 .
v ¢0s 0 cos § cos (o — 6)

Wave drag approaches a certain limiting value determined by the free stream parameters with unlimited in-
crease in the number of star lobes.

In order to determine the skin-friction drag the surface area S is estimated:

S>nlVltgo —tg 8 + (igotg ) + V (tg o — 12 6F 1 (igotgle —
— )71 =20V {tg 0 — tg 8)° + (tg 0 tg (2 — O))* = S(n).
It is seen that as n —«, §S(n) — =, This indicates that X, = S (f is the average drag coefficient) and un-
boundedly increases in the limiting case. The latter indicates the presence of optimum number of lobes n for

which the total drag is a minimum, This result is confirmed in [15, 16]. It remains to determine the effect of
agpect ratio on star-shaped body and the shape of its midsection,

3. Plane star-shaped bodies with sharp leading edges and symmetric midsection are investigated (Fig.
1a). The ratio of the diameter of the circle inscribed in the star-shaped midsection of a cone of equal cross-
sectional area dvp/de equals 0.5, The number of cycles of the star, taking into account the results of para-
metric optimization [15, 161, is chosen to be four, Bodies considered are those with aspect ratios of equiva-
lent cone from one to three. Apart from a cone, a stepped body of revolution, optimized for each aspect ratio,
has also been considered. Experiments on these configurations were conducted in the wind-tunnel T-313
ITPM SO AN SSSR for M = 3; 4; 5; and Reypy = 107 on models with the diameter of equivalent axisymmetric
midsection of 65 mm.

The solid line 2 in Fig. 2 is the computed relation of the ratio of the drag of the equivalent cone X to
the drag X, ¢ of curvilinear star shaped body with four lobes, optimally designed for different aspect ratios A
of the cone in [11, 15]. The dash—dot line 3 shows similar dependence for stepped axisymmetric body with
minimum drag, Experimental relation Xj/Xq ¢ = f(A) for plane star-shaped body and optimum stepped body
of revolution obtained for M = 4 are shown, respectively, by dashed curve 4 and 5 (computed curve 1 is ob-
tained for optimization without the singularities of Newtonian approximation [11]).

The qualitative agreement of the nature of computed and experimental curves is apparent, The guantita-
tive disagreement of curves for star-shaped bodies of small aspect ratio is caused mainly by the difference in
the equivalence used in computation and experiment, For the sake of convenience of the intermediate computa-
tions in optimization [11, 15], a cone inscribed in the star-shaped body was the equivalent body. In view of this,
at small aspect ratios, whenever large spans of stars are designed, the inscribed cones differ mainly from
cones with equally large midsections, Taking all these facts into consideration, the computed curve is slightly
raised in the small aspect ratio region,

At aspect ratios close to three, the difference between computed and experimental results can be, appar-
ently, explained by the different skin-friction contribution to the total drag of the respective star-shaped bodies.

The Newtonian approximation for axisymmetric bodies agree satisfactorily with experimental results for
all the aspect ratios studied (see curves 3 and 5).

As a result of the comparative analysis carried out, it is possible to rely on the optimized results for
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three~dimensional configurations in describing the aerodynamic loading with Newton's shock theory.

4, Plane star~shapéd bodies with sharp leading edges and four-lobed midsection with rotation at angle
v = 0 (Fig. 1b) are investigated experimentally. The ratios of the diameter of the circle inscribed in the mid-
dle of the star to the diameter of the midsection of an equivalent cone with aspect ratio 1.3 are chosen equal to
0.57, 0.64, 0.8, with aspect ratios 1,6; 2 the ratio equals 0,57, Besides the cone, for an aspect ratio A=
1.3, a symmetric star-shaped body with the same ratios of (dvp/de) has been used as an equivalent,

The dependence of the relative drag Xk/Xg¢ of the star-shaped body with rotation on the aspect ratio A
for M = 4 and rvp/re = 0,57 is given in Fig. 2 by the curve 6 which is practically equidistant from the curve
4 for symmetric stars. This shows that it is possible to optimize, using the approach [11, 15], symmetric
stars and stars with rotation, by appropriately coupling the cyclical surfaces during the computation,

The dependence of Xi/Xgt at zero angle of attach on the ratio I'Vp/l”e for aspect ratio A» = 1.3 for sym-
metric stars (solid lines) and stars with rotation are shown in Fig. 3. The curve 2 corresponds to M = 5; 1,3
are for m = 4; 4,5for M = 3. It is seen that, as in [16], the parameter I‘Vp/I'e is critical for the reduction of
total aerodynamic drag of star-shaped bodies. Here, because of differences in the values of the integral angles

of attack of windward surfaces the star-shaped bodies with different midsection shapes have different drag for
one and the same value of er/re.

5. Plane star-shaped bodies with four lobed midsection and blunt leading edges (Fig. 1c) are investigated.
The ratios of the diameter of the circle inscribed in the star-shaped midsection to the diameter of the midsec-
tion of an equivalent cone with aspect ratios 1,46 and 1.83 are equated, respectively, to 0.66 and 0.525. For an
aspect ratio 1.46 the ratios of the diameter of cylindrical blunting to the diameter of equivalent cone are
chosen to be equal to 0, 0.046, 0.095, 0,187, and 0.282. For an aspect ratio 1.83 these ratios are respectively
0, 0,0282, 0.0563, 0.112, 0,169, Besides sharp cone for blunt star with parameter A = 1,43 and rz/re =0.29, a
blunt cone with rZ/re = 0.11 has been constructed as an equivalent in terms of cross-sectional areas.
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Figure 4 shows the dependence of the ratios of drag of the basic sharp cone Xy and blunt stars Xg¢ on
the ratio of radii of blunt leading edges rzy and base of the cone ro. The curve 1 corresponds to the drag of a
blunt star with an aspect ratio A» = 1,43 at M = 4,

Curves 2-4 (M = 4, 3, 5, respectively) correspond to blunt star with aspect ratio A = 1.85,

Comparing the practically equivalent curves 1 and 2, it is possible to conclude on the identity of the in-
fluence of cylindrical bluntness of leading edges on the drag of stars with intervals in aspect ratios from 1.3
to 2.0.

From a comparison of the curves 2, 3, and 4 it is seen that there is a nonmonotonic effect of the Mach
number on the drag of star-shaped bodies with cylindrical blunt leading edges. A gain in drag when compared
to the basic sharp cone is observed in this case only for M = 4, 5 with ry/re = 0.06,

It is significant that for maximum bluntness (rz/re = 0.29) the star with aspect ratio A = 1,43 at M = 4
loses in terms of drag to the equivalent blunt cone by only 5%.

6. The resultant relations between relative drag X /Xgt and Mach number for three variants of star-
shaped bodies (see Fig. 1) are given in Fig. 5. The solid lines correspond to symmetric stars, dotted curves
represent stars with rotation, and dashed curves are for stars with blunt leading edges. The dash—dot curve
5 refers to symmetric star (A = 2) as well as star with rotation (A = 1.6). The curves 1-4, 6, 8, and 10 corre-
spond to aspect ratios A = 1, 1.3, 1.6, 1.3, 2, 2.4, 2,8, curves 7, 9, and 11 correspond to aspect ratio » = 1,85
and relative radii of bluntness r,/rg = 0.028, 0,056, 0,112,

It is seen from the above plots that for star-shaped bodies with sharp leading edges, with increase in
Mach number the advantage with respect to the drag of equivalent cone improves in the entire range of aspect
ratios under study. For stars with blunt leading edges the relations Xk/Xst = f(M) have points of inflection,
Here the larger value of r;/ro corresponds to lower value of Mach number at which the optimum is achieved.

It is worth observing that only the curves 10, 11 have a value less than 1 in the entire range of parame-
ters. The remaining nine curves exhibit appreciable advantage of star shaped bodies compared to cones with
equivalent cross-sectional areas,

Thus, the above parametric study indicates the correctness of the general approach [11, 15] to the opti~
mization of hypersonic three-dimensional bodies with symmetric star-shaped midsections and stars with rota-
tion. This approach makes it possible, apparently, to introduce into the search for optimal solution a small
leading edge bluntness [ 19, 20] as an "external'’ (specified) variable parameter, where'a combination of aero~-
dynamic and geometric characteristics can be used as objective functions.
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FLAT SUPERSONIC UNDEREXPANDED JETS
USING A LASER SCHLIEREN METHOD

V. A. Kochnev and I, M. Naboko UDC 533.6.011.5:621,375.826

1. Interest in flat jet flows arose due to progress in nonequilibrium physicochemical kinetics, creation
of gasdynamic lasers (GDL), and solution of other problems arising in the newtechnology. In particular, in
modeling GDL, flat jets have certain advantages over the usual nozzles: for example, they provide maximum
expansion velocity of the flow with planar geometry. However, the interrelation of the kinetic and gasdynamic
processes occurring in the jets, as well as the presence of viscous effects, manifested, for example, in the
formation of boundary layers, complicate the study of supersonic, high-enthalpy, gas jets and require that
these jets be experimentally studied.

The purpose of this work is to investigate gasdynamic characteristics of a flat jet: experimental deter-
mination of the density profile along the center of the stream tube of the jet and numerical estimates of the
boundary layer, arising on the lateral surfaces bounding the jet, based on a theoretical analysis. The proposed
experimental method, which has high sensitivity and temporal resolution =1 usec, is based on measuring a se-
quence of density gradients, relating to different cross sections of the flow studied with the help of the laser
schlieren method [1].

There are several papers concerned with investigation of flat jeté flowing out of a sonic slit nozzle into
a space bounded by two parallel surfaces {2~5]. The wave structure of such a stationary flow was studied by
the shadow method in [2~4]. A generalizing dependence of the location of the central jump as a function of the
determining parameters was obtained in [4]. The results are compared with data for axisymmetrical jets, In
some regimes, separation of the boundary layer, forming on the lateral surfaces bounding the jet, is observed
[2]. The flow field of a flat, weakly underexpanded perfect gas jet is calculated in [5] using the stabilization
method,

From an analysis of the theoretical model both for flat and for axisymmetrical jets, it is possible to ob-
tain a generalized relation for the density distribution at the center of the stream tube [3]:
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